

I. COURSE INFORMATION					
COURSE CODE	COMP3501				
COURSE TITLE	Computer Organization & Asser	nbly Lan	guage		
OMAN QUALIFICATION FRAMEWORK (OQF) LEVEL	7				
CREDIT HOURS	3				
CONTACT HOURS	4				
PRE-REQUISITES	COMP2101, ECCE3206, LANC	2058			
CO-REQUISITES	-				
EQUIVALENT COURSES	COMP3518				
INCOMPATIBLE COURSES					
	□ University Requirement	irement		/ Elective	
	College Requirement		□ College Elective		
COURSE CATEGORY	Department Requirement		□ Department Elective		
COURSE CATEGORI	⊠ Major Requirement		□ Major Elective		
	□ Specialization Requirement		□ Specialization Elective		
	□ Other (specify):				
Course Owner	College: Science		Department: Computer Science		
COURSE OWNER	Center:		Unit:		
DELIVERY MODE	☑ Face to Face	🗆 Bler	nded	□ Online	
COURSE TYPE		1	⊠ Lecture/La	ıb	

	□ Lecture/Seminar	□ Lecture/Stu		udio		
	□ Lecture/Tutorial		□ Lecture/La	ab/Tutorial o	or Seminar	
			□ Laboratory (Practical)			
	□ Field or Work Placement □		□ Studio			
	□ Seminar [□ Internship	□ Internship		
			Project			
	□ Thesis		□ Other (spec	cify):		
LANGUAGE OF INSTRUCTION	English		<u> </u>			
	The objective of the course is to	introduce	e the students to	the fundam	entals of	
	computer organization and assen	bly lang	uage programm	ning. The co	urse topics	
	include data representations, inst	ruction s	et architectures,	, assembly la	anguage	
COURSE DESCRIPTION	programming, memory hierarchy	, cache r	nemory, virtual	memory, in	put/output	
	and storage systems, and introdu	ction to p	barallel architec	tures. Stude	nts will	
	practice assembly language prog	ramming	of a selected an	rchitecture.		
	□ Augmented Reality		□ Flipped Classroom			
T	Blended Learning		⊠ Problem-B	ased Learni	ng	
TEACHING AND LEARNING Strategies	Discovery-Based Learning		□ Project-Ba	sed Learnin	g	
	□ Student-Led Learning		□ Team-Based Learning			
	U Work-Based Learning		□ Other (specify):			
	☑ In-term examination(s) (20 %)	□ Quizzes (%)		□Other	
ASSESSMENT COMPONENT AND WEIGHT	Homework assignments (20%)		\Box Project (%)		(specify): lab	
	☐ Final examination (40 %)		☑ Practical/ Lab (20%) (%)			
TEXTBOOKS AND EDUCATIONAL MATERIAL	 Linda Null and Julia Lobur, <i>The Essentials of Computer Organization and</i> <i>Architecture</i>, Third Edition, John and Barlett Publishers (ISBN-13 9781449600068), 2012. Kip Irvine, <i>Assembly Language for x86 Processors</i>, 6th Edition, Prentice Hall, 2011. 				(ISBN-13:	
GRADING METHOD	A-F Scale	□ Pass	/Not Pass	□ Other (specify):	

GRADING METHOD DESCRIP	TION
-------------------------------	------

	Range	Letter Grade	Description
A-F GRADING SCALE:	90 - 100	A	Exceptional performance: All course objectives achieved and met in a consistently outstanding
	86 - 89.9	A-	manner.
	81-85.9	В+	Very Good Performance: The majority of the
	77 – 80.9	В	 course objectives achieved (majority being at least two-thirds) and met in a consistently thorough
	73 – 76.9	В-	manner.
	68 – 72.9	C+	Satisfactory Performance: At least most of
	64 – 67.9	С	course objectives have been achieved and met satisfactorily.
	60 - 63.9	C-	suisiecomy.
	55 – 59.9	D+	Minimally Acceptable Performance: The course
	50 - 54.9	D	objectives met at a minimally acceptable level.
	0-49.9	F	Unacceptable performance: The course
			objectives not met at a minimally acceptable level.
PASS/NOT PASS:			
OTHER:			

II. SEMESTER INFORMATION

Semester/Year	Spring 2025	Section(s)	01 and 02
DAY AND TIME	Section 01 • Lecture:Sun 14:15-16:05, CMT/D12 • Lab: Tue 14:15-16:05, SCI/0019B	Venue(s)	Section 01 • Lec.:Sun CMT/D12 • Lab.:Tue, SCI/0019B
	Section 02 • Lecture:Mon 14:15-16:05, CMT/D16 • Lab: Wed 14:15-16:05, SCI/0022		Section 02 Lec.:Mon CMT/D16 Lab.:Wed SCI/0022
COURSE COORDINATOR	Dr. Amjad Mohamed Al- Tobi	COURSE TEAM	
COORDINATOR OFFICE	Office No. 1049, CIS.	OFFICE HOURS	Sun, Tue: 11-12
COORDINATOR EXTENSION	2821	COORDINATOR EMAIL	amjad@squ.edu.om

III. ALIGNMENT OF COURSE LEARNING OUTCOMES (CLO), PROGRAM LEARNING OUTCOMES (PLO), GRADUATE ATTRIBUTES (GA), AND OMAN QUALIFICATION FRAMEWORK (OQF) CHARACTERISTICS

	CLO	PLO / SO	SQU Graduate	OQF
			Attributes	Characteristics
1.	Describe the basic functional components of a computer	SO1	Α	1,3
	system, their operation and interconnection.			
2.	Define several approaches to processor design: non-	SO1	Α	1,3
	pipelined, pipelined, superscalar, RISC, CISC,			
	multiprocessor.			
3.	Use data representation, instruction set, addressing modes	SO1	Α	1,3
	and register organization.			
4.	Explain memory organization, cache memory, and storage	SO1	Α	1,3
	systems.			
5.	Describe I/O system and interconnection structures of	SO1	Α	1,3
	computers, I/O driven interrupts, and interrupt handling.			
6.	Describe parallel processing architectures.	SO1	Α	1,3
7.	Use the process of assembling, linking, executing, and	SO1,SO2	A,B	1,2,3
	debugging assembly programs.			
8.	Develop assembly language programs that include	SO1,SO2	A,B	1,2,3
	implementations of arithmetic expressions, flow control			
	constructs (sequential, conditional and iterative) and			
	subroutines.			
9.	Identify the tradeoff factors affecting the design and	SO2	Α	1
	performance of a computer system component (e.g., ISA,			
	pipelining speedups, memory hierarchy, cache memory			
	and I/O control methods).			

IV. COURSE LEARNING OUTCOMES (CLOS) AND ASSESSMENT CRITERIA AND METHODS (FOR EACH CLO)

CLO1: Describe the basic functional components of a computer system, their operation and interconnection.

Assess	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	Assessment Methods
A)	Demonstrates a thorough understanding of the functional components (e.g., CPU, memory, I/O systems) and their respective operations.	Homework, Midterm, Final
В)	Provides a clear and accurate description of how these components interconnect and communicate with each other in a computer system.	
C)	Applies knowledge to explain how component interconnections influence overall system performance.	

CLO2: Define several approaches to processor design: non-pipelined, pipelined, superscalar, RISC, CISC, multiprocessor.

Assessiv	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	ASSESSMENT METHODS			
A)	Identifies and clearly defines the characteristics of non- pipelined, pipelined, superscalar, RISC, CISC, and multiprocessor designs.	Homework, Final			
B)	Compares and contrasts these processor design approaches, highlighting strengths and weaknesses.				
CLO3: L	Jse data representation, instruction set, addressing modes a	nd register organization.			
Assessiv	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	ASSESSMENT METHODS			
A)	Demonstrates accurate and comprehensive knowledge of data representation, including binary, hexadecimal, and other forms.	Homework, Midterm, Final			
В)	Identifies and utilizes instruction sets, addressing modes, and register organization when designing and interpreting assembly code.				
C)	Applies data representation and instruction set principles in assembly language programming exercises.				
CLO4: E	xplain memory organization, cache memory, and storage sy	stems.			
Assessiv	NENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	Assessment Methods			
A)	Provides a detailed explanation of different types of memory organization, including cache memory and hierarchical storage systems.	Homework, Midterm, Final			
B)	Demonstrates an understanding of how cache memory and storage systems improve computer performance.				
C)	Analyzes the implications of various memory organization techniques on system speed and efficiency.				
CLO5: [handlin	Describe I/O system and interconnection structures of cong.	nputers, I/O driven interrupts, and interrupt			
Assessiv	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	Assessment Methods			
A)	Describes the role and functioning of I/O systems and interconnection structures within a computer.	Homework, Midterm, Final			
B)	Demonstrates a clear understanding of I/O-driven interrupts, including how they are triggered and handled.				

Assess	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	Assessment Methods
A)	Identifies and clearly explains the different types of parallel processing architectures (e.g., SIMD, MIMD).	Homework, Final
B)	Evaluates the benefits and limitations of parallel processing architectures in comparison to traditional architectures.	
CLO7:	Use the process of assembling, linking, executing, and debug	ging assembly programs.
Assess	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	Assessment Methods
A)	Demonstrates a complete understanding of the process of assembling, linking, executing, and debugging assembly language programs.	Homework, Lab Test
B)	Assembles, links, executes, and debugs assembly programs during laboratory exercises and assessments.	
	Develop assembly language programs that include implemen ucts (sequential, conditional and iterative) and subroutines.	tations of arithmetic expressions, flow contro
Assess	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	Assessment Methods
A)	Implements arithmetic expressions in assembly language.	Homework, Lab Test
B)	Uses flow control constructs, including sequential, conditional, and iterative operations, in assembly programs.	
C)	Develops and tests subroutines that are used in larger assembly programs, ensuring functional accuracy.	
	Identify the tradeoff factors affecting the design and perform pelining speedups, memory hierarchy, cache memory and I/(
Assess	MENT CRITERIA (TO ACHIEVE THIS OBJECTIVE, THE STUDENT MUST)	Assessment Methods
A)	Identifies and clearly explains various trade-off factors in system design (e.g., performance vs. cost, speed vs. complexity).	Homework, Midterm, Final
		-
B)	Evaluates how design decisions impact overall system performance, particularly in relation to pipelining, memory hierarchy, and cache memory.	

WEEK	LECTURES #	TOPICS/ SUBJECTS	READINGS/ CHAPTERS	REMARKS (e.g., ASSESSMENTS)
1	Lecture 1 Lab 1	L1: Introduction: main components of a computer, historical development, computer level hierarchy, von-Neumann model, non-von Neumann models. Lab1: X86 architecture: general concepts, x86 architecture details, x86 memory management, components of a typical x86 computer, I/O system.	Textbook 1: 1.1-1.2, 1.5- 1.8 Textbook 2: 2.1 – 2.5	Midterm, Final
2	Lecture 2	L2: Data Representation in Computer Systems: positional numbering systems, converting between bases. Lab2: Microsoft Macro	Textbook 1: 2.1 – 2.3	HW1, Midterm, Lab Test Final
	Lab 2	Assembler (MASM): basic elements of MASM assembly language, example: adding and subtracting integers, assembling, linking, debugging, and running programs.	Textbook 2: 3.1 – 3.3	
3	Lecture 3	L3: Data Representation in Computer Systems: signed integer representation, floating-point representation, character codes.	Textbook 1: 2.4 – 2.6	HW1, Midterm, Lab Test Final
	Lab 3	Lab3: Microsoft Macro Assembler: defining data, symbolic constants.	Textbook 2: 3.4 – 3.5	
4	Lecture 4	L4: Introduction to a Simple Computer: CPU basics and organization, the bus, clocks, I/O subsystem, memory organization and addressing.	Textbook 1: 4.1 – 4.6	HW2, Midterm, Lab Test Final
	Lab 4	Lab4: Data Transfers, Addressing, and Arithmetic: data transfer instructions, addition and subtraction.	Textbook 2: 4.1 – 4.2	
5	Lecture 5	L5: Introduction to a Simple Computer: interrupts, simple	Textbook 1: 4.7 – 4.12	HW2, Midterm, Lab Tes

	Lab 5	computerarchitecture(MARIE),instructionprocessing,a simpleprogram,adiscussiononassemblers,extendingtheinstruction set.Lab5: Data Transfers,Addressing, and Arithmetic:datatransferinstructions, additionand subtraction.	Textbook 2: 4.1 – 4.2	Final
6	Lecture 6 Lab 6	L6: ISAs: instruction formats, instruction types, addressing. Lab6: Data Transfers, Addressing, and Arithmetic: data-related operators and directives, indirect addressing, JMP and LOOP instructions.	Textbook 1: 5.1 – 5.4 Textbook 2: 4.3 – 4.5	HW2, Midterm, Lab Test, Final
7	Lecture 7 Lab 7	 L7: Instruction Set Architectures: instruction pipelining, examples. Lab7: Stack Operations and Procedures: linking to an external library, the book's link library, stack operations. 	Textbook 1: 5.5 – 5.6 Textbook 2: 5.1 – 5.4	HW3, Midterm, Lab Test, Final
8	Lecture 8 Lab 8	 L8: Memory: memory types, memory hierarchy. Lab8: Stack Operations and Procedures: defining and using procedures, program design using procedures. 	Textbook 1: 6.1 – 6.3 Textbook 2: 5.5 – 5.6	HW3, Midterm, Lab Test, Final
9	Lecture 9 Lab 9	L9: Midterm Exam. Lab9: Conditional Processing: Boolean and comparison instructions.	Textbook 2: 6.1 – 6.2	HW3, Lab Test, Final
10	Lecture 10 Lab 10	L10: Memory: cache memory, real- world example. Lab10: Conditional Processing: conditional jumps, conditional loop instructions, conditional structures.	Textbook 1: 6.4, 6.6 Textbook 2: 6.3 – 6.5	HW4, Lab Test, Final
11	Lecture 11	L11: System Software: operating systems.	Textbook 1: 8.1 – 8.2	HW4, Lab Test, Final

	Lab 11	Lab11: Integer Arithmetic: shift and rotate instructions and their applications.	Textbook 2: 7.1-7.3	
12	Lecture 12	L12: System Software: protected environments, programming tools.	Textbook 1: 8.3-8.4	HW4, Lab Test, Final
	Lab 12	Lab12: Integer Arithmetic: multiplication and division instructions, extended addition and subtraction.	Textbook 2: 7.4-7.5	
13	Lecture 13 Lab 13	L13: Alternative Architectures:RISC machines.Lab13: Practice for Lab Test	Textbook 1: 9.1 – 9.2	Lab Test, Final
14	Lecture 14 Lab 14	L14: Alternative Architectures:Flynn's taxonomy, parallel and multiprocessor architectures.Lab14: Lab Test	Textbook 1: 9.3 – 9.4	Final
15	Lecture 15 Lab 15	L15: Review. Lab15: Review.		Final

Assessment Plan:				
Ітем	DATE OUT	DUE DATE	WEIGHT	
HW1	W3	W4	5%	
HW2	W5	W7	5%	
Midterm	W8 (THU 27/0	3/2025, 13:00-13:00)	20%	
HW3	W8	W9	5%	
HW4	W10	W11	5%	
LAB TEST	W13 (THU 01/	W13 (Тно 01/05/2025, 13:00-13:00)		
FINAL EXAM	Тни 29/05/20	25, 11:30-14:30	40%	

DEPARTMENT'S LATE SUBMISSION POLICY:

(A) 1-24 HOURS: 25% OF THE MARK WILL BE DEDUCTED.

(B) > 24 HOURS: NOT ACCEPTED.

DEPARTMENT'S POLICY FOR DEALING WITH CHEATING:

IT IS ESSENTIAL THAT EACH STUDENT SOLVES ALL PROGRAMMING ASSIGNMENTS, LAB TESTS AND EXAMS INDIVIDUALLY UNLESS INSTRUCTED OTHERWISE, E.G., FOR GROUP PROJECTS. COPYING, PLAGIARISM, COLLUSION, SWITCHING, AND FALSIFICATION ARE VIOLATIONS OF THE UNIVERSITY ACADEMIC REGULATIONS. STUDENTS INVOLVED IN SUCH ACTS WILL BE SEVERELY PENALIZED. THE DEPARTMENT HAS ADOPTED A FIRM POLICY ON THIS ISSUE. A ZERO MARK WILL BE ASSIGNED THE FIRST TIME A STUDENT IS CAUGHT INVOLVED IN COPYING AND HIS/HER NAME WILL BE ADDED TO A WATCH LIST MAINTAINED BY THE HEAD OF DEPARTMENT. FURTHER REPEATED INVOLVEMENTS IN COPYING WILL CAUSE THE STUDENT TO GET AN F GRADE IN THAT COURSE. THIS IS IN LINE WITH THE UNIVERSITY ACADEMIC REGULATIONS.

VII. STUDENTS RESPONSIBILITIES

It is the student's responsibility to know and comply with all University Academic Regulations relevant to participation in this course. These regulations specifically include attendance requirements and student academic code of conduct.

ACADEMIC INTEGRITY	The University expects the students to approach their academic endeavors with the highest academic integrity. Please refer to the Undergraduate Academic Regulations .
ADD AND DROP	Students who wish to drop or add the course should review the Undergraduate Academic Regulations.
ATTENDANCE	Sultan Qaboos University has a clear requirement for students to attend courses, detailed in the Undergraduate Academic Regulations .
Assessment and Grading	To ensure the provision of a sound and fair assessment and grading, please review the Undergraduate Academic Regulations .
GRADE APPEAL	Students who wish to appeal their grades should review the Undergraduate Academic Regulations .
CLASSROOM POLICIES	Students are expected to dress professionally during class time as required by the University. Use of phones or any other electronic devices in the classroom during class time is strictly prohibited. Unauthorized use may lead to faculty member confiscation of the device for the remainder of the class. Behavior that persistently or grossly interferes with classroom activities is considered disruptive behavior and may be subject to disciplinary action. A student responsible for disruptive behavior may be required to leave the class.
Late and Make-Up Work	Students are required to meet the course objectives by submitting coursework no later than the assigned due date. Students may be allowed to submit late work if approved by the course coordinator. Assignments submitted after the due date may be penalized.
MISSED EVALUATIONS	All quizzes, tests, clinical evaluations, and exams must be completed by the date they are assigned. If a quiz, test, or exam is missed due to a documented emergency situation (e.g., medical emergency, death in the immediate family), it is the student's responsibility to contact the instructor.
OTHER	

Course Outline Appendix

1. PROGRAM LEARNING OUTCOMES

- SO1. Analyze a complex computing problem and to apply principles of computing and other relevant disciplines to identify solutions.
- SO2. Design, implement, and evaluate a computing-based solution to meet a given set of computing requirements in the context of the program's discipline.
- SO3. Communicate effectively in a variety of professional contexts.
- SO4. Recognize professional responsibilities and make informed judgments in computing practice based on legal and ethical principles.
- SO5. Function effectively as a member or leader of a team engaged in activities appropriate to the program's discipline.
- SO6. Apply computer science theory and software development fundamentals to produce computing-based solutions.

2.	SQU GRADUATE ATTRIBUTES AND COMPETENCIES FOR UNDERGRADUATE STUDIES
----	--

GRADUATE ATTRIBUTES	GRADUATE COMPETENCIES FOR
	UNDERGRADUATE STUDIES
A. Cognitive Capabilities: The graduate has	1. Demonstrates familiarity and works with
sufficient general and specialized theoretical	advanced specialized knowledge in the area of
knowledge that enables him/her to deal well	specialization.
with his/her specialty and other related	2. Demonstrates a general understanding of the
fields.	relationship of advanced specialized knowledge
	with knowledge in other relevant professional
	fields and aspects.
	3. Demonstrates a comprehensive understanding of
	the theories, principles, and methods used in
	his/her specialty, and how to create and apply new
	knowledge.
	4. Demonstrates general knowledge of the legal
	environment and necessary relevant regulatory

	frameworks.
	5. Shows awareness of contemporary literature and
	research.
B. Skill and Professional Capability: The	1. Applies concepts, theories, and investigative
graduate has sufficient skill and practical	methods to synthesize and interpret information
experience that enables him/her to perform	to evaluate conclusions.
all tasks related to the specialization and	2. Applies appropriate research methods and
other related fields.	techniques and employs digital knowledge
	3. Evaluates and critiques information
	independently
	4. Uses cognitive and technical skills to analyze
	complex issues and develop appropriate
	solutions.
	5. Initiates new ideas or processes in the
	professional, educational or research context.
C. Effective Communication: The graduate	1. Explains, presents, and adapts information to suit
has the ability to communicate effectively	the recipients.
with others to achieve the desired results	2. Employs appropriate information and
	communication technology to collect and analyze
	information.
D. Autonomy and Leadership: The graduate	1. Performs advanced professional activities
has the ability to lead, make decisions and	independently.
take responsibility for decisions.	2. Demonstrates leadership skills.
	3. Takes professional responsibility.
	4. Assumes full accountability for the tasks and their
	output.
E. Responsibility and Commitment: The	1. Manages time and other resources assigned to
graduate appreciates the importance of	accomplishing tasks effectively and responsibly.
available resources and deals with them	2. Demonstrates effective practices when working in
	teams.

effectively and is committed to the ethics of	3. Demonstrates advanced levels of understanding
the profession and society.	of values and ethics relevant to the specialization,
	profession and local and international society and
	promotes them among others.
	4. Works within the professional, institutional, and
	specialization guiding frameworks and strategic
	plans.
	5. Interacts with community affairs positively and
	preserves national identity.
F. Development and Innovation: The	1. Demonstrates the ability to independently manage
graduate has a passion for development and	learning tasks, with an awareness of how to
innovation in the field of specialization.	develop and apply new knowledge.
	2. Utilizes specialized knowledge and skills for
	entrepreneurship.
	3. Utilizes creative and innovative skills in the field
	of specialization.

3. OQF CHARACTERISTICS

- 1. Knowledge
- 2. Skills
- 3. Communication, Numeracy, and Information and Communication Technology Skills.
- 4. Autonomy and Responsibility
- 5. Employability and Values
- 6. Learning to learn